Robobee: It can fly & Swim !
Cambridge (Massachusetts):
For the first time,
scientists have designed an insect-like robot smaller than a paperclip that can
both fly and swim — paving the way for future dual aerial aquatic robotic
vehicles.
The biggest challenge is conflicting design
requirements: aerial vehicles require large airfoils like wings or sails to
generate lift while underwater vehicles need to minimise surface area to reduce
drag.
To solve this engineers at the Harvard
University’s John A Paulson School of Engineering and Applied Science (SEAS)
took a clue from puffins.
The birds with flamboyant beaks are one of
nature’s most adept hybrid vehicles, employing similar flapping motions to
propel themselves through air as through water.
“Through various theoretical, computational and
experimental studies, we found that the mechanics of flapping propulsion are
actually very similar in air and in water,” said Kevin Chen, a graduate student
at the Harvard Microrobotics Lab at SEAS.
The RoboBee, designed in postdoctoral fellow
Robert J Wood’s lab, is a microrobot, smaller than a paperclip, that flies and
hovers like an insect, flapping its tiny, nearly invisible wings 120 times per
second.
In order to make the transition from air to
water, the team first had to solve the problem of surface tension.
The RoboBee is so small and lightweight that it
cannot break the surface tension of the water.
To overcome this hurdle, the RoboBee hovers over
the water at an angle, momentarily switches off its wings, and crashes
unceremoniously into the water in order to sink.
Next the team had to account for water’s
increased density.
“Water is almost 1,000 times denser than air and
would snap the wing off the RoboBee if we didn’t adjust its flapping speed,”
said graduate student Farrell Helbling, the paper’s second author.
The team lowered the wing speed from 120 flaps
per second to nine but kept the flapping mechanisms and hinge design the same.
A swimming RoboBee changes its direction by
adjusting the stroke angle of the wings, the same way it does in air. Like a
flying version, it is still tethered to a power source.
The team prevented the RoboBee from shorting by
using deionised water and coating the electrical connections with glue.
While this RoboBee can move seamlessly from air
to water, it cannot yet transition from water to air because it can’t generate
enough lift without snapping one of its wings.
Solving that design challenge is the next phase of the research,
according to Chen.
Watch the Video here.
No comments:
Post a Comment